Lec 1 | MIT 6.042J Mathematics for Computer Science, Fall 2010 Lec 1 | MIT 6.042J Mathematics for Computer Science, Fall 2010 begin-post-stats MIT OpenCourseWare • 560K views end-post-stats begin-duration 44:09 end-duration Math topics: _Number_theory_##Number theory##_Integer_##Integer##_Natural_number_##Natural number##_Number_theory_##Number theory##_Analytic_number_theory_##Analytic number theory##_Elliptic_curve_##Elliptic curve##_Riemann_hypothesis_##Riemann hypothesis##_Goldbach's_conjecture_##Goldbach's conjecture##_Mathematical_proofs_##Mathematical proofs##_Consistency_##Consistency##_Mathematical_proof_##Mathematical proof##_Completeness_(logic)_##Completeness (logic)##_Elementary_geometry_##Elementary geometry##_Point_(geometry)_##Point (geometry)##_Line_(geometry)_##Line (geometry)##_Sphere_##Sphere Other topics: _Logic_##Logic##_Truth_value_##Truth value##_Statement_(logic)_##Statement (logic)##_Truth_##Truth##_Fact_##Fact##_Mathematical_logic_##Mathematical logic##_Axiom_##Axiom##_Proposition_##Proposition##_Truth_table_##Truth table video-id: L3LMbpZIKhQ channel_MIT_OpenCourseWare_ So What Learning Analytic number theory , Elementary geometry , Logic , Mathematical logic , Mathematical proofs , Number theory Monday, January 22, 2018 Share Share