Lecture 4, Convolution | MIT RES.6.007 Signals and Systems, Spring 2011 Lecture 4, Convolution | MIT RES.6.007 Signals and Systems, Spring 2011 begin-post-stats MIT OpenCourseWare • 157K views end-post-stats begin-duration 52:17 end-duration Math topics: _Mathematical_notation_##Mathematical notation##_Addition_##Addition##_Multiplication_##Multiplication##_Summation_##Summation##_Integers_##Integers##_0_(number)_##0 (number)##_Integer_##Integer##_1_(number)_##1 (number)##_Mathematical_analysis_##Mathematical analysis##_Limit_(mathematics)_##Limit (mathematics)##_Asymptote_##Asymptote##_Continuous_function_##Continuous function##_Sequences_and_series_##Sequences and series##_Geometric_series_##Geometric series##_Series_(mathematics)_##Series (mathematics)##_Sequence_##Sequence##_E_(mathematical_constant)_##E (mathematical constant)##_Euler's_formula_##Euler's formula##_Exponential_function_##Exponential function##_Exponential_decay_##Exponential decay Other topics: _Physics_##Physics##_Linearity_##Linearity##_Time_##Time##_Euclidean_vector_##Euclidean vector##_Digital_signal_processing_##Digital signal processing##_Signal_(electrical_engineering)_##Signal (electrical engineering)##_Fourier_analysis_##Fourier analysis##_Convolution_##Convolution##_Control_theory_##Control theory##_Impulse_response_##Impulse response##_Time-invariant_system_##Time-invariant system##_LTI_system_theory_##LTI system theory video-id: _vyke3vF4Nk channel_MIT_OpenCourseWare_ So What Learning Control theory , Digital signal processing , E (mathematical constant) , Integers , Mathematical analysis , Mathematical notation , Physics , Sequences and series Friday, January 19, 2018 Share Share