Lec 3 | MIT 6.042J Mathematics for Computer Science, Fall 2010 Lec 3 | MIT 6.042J Mathematics for Computer Science, Fall 2010 begin-post-stats MIT OpenCourseWare • 119K views end-post-stats begin-duration 1:22:00 end-duration Math topics: _Mathematics_##Mathematics##_Existential_quantification_##Existential quantification##_Predicate_(mathematical_logic)_##Predicate (mathematical logic)##_Parity_(mathematics)_##Parity (mathematics)##_Ordered_pair_##Ordered pair##_Mathematical_terminology_##Mathematical terminology##_Theorem_##Theorem##_Mathematical_proof_##Mathematical proof##_Corollary_##Corollary##_Lemma_(mathematics)_##Lemma (mathematics)##_Functions_and_mappings_##Functions and mappings##_Zero_of_a_function_##Zero of a function##_Factorial_##Factorial##_Permutation_##Permutation Other topics: _Number_theorists_##Number theorists##_Andrew_Wiles_##Andrew Wiles##_Carl_Friedrich_Gauss_##Carl Friedrich Gauss##_Pierre_de_Fermat_##Pierre de Fermat##_Equivalence_classes_##Equivalence classes##_Invariant_(mathematics)_##Invariant (mathematics)##_Value_(ethics)_##Value (ethics)##_Finite-state_machine_##Finite-state machine video-id: NuGDkmwEObM channel_MIT_OpenCourseWare_ So What Learning Equivalence classes , Functions and mappings , Mathematical terminology , Mathematics , Number theorists Saturday, January 20, 2018 Share Share